Optimization of ink composition based on a non-platinum cathode for single membrane electrode assembly proton exchange membrane fuel cells

The paper on research we did long time ago is out.

XPS structural information is correlated with electrochemical performance in fuel cell and stability by Principal Component Analysis.

Non-Pt based oxygen reduction catalyst fuel cell performance is reported for various electrode compositions. Ink formulations for pyrolyzed Co porphyrin based cathode electrocatalysts were evaluated in a membrane electrode assembly (MEA) configuration and X-ray photoelectron spectroscopy was performed on the MEA catalyst layers. The effect of cooling time trajectories of the catalysts after pyrolysis as well as Nafion content in the ink formulation were studied. By building statistical structure-to-property relationships between XPS and MEA performance using multivariate analysis we have determined that the higher stability of fast-cooled containing inks is mainly associated with better preserved graphic carbon from the carbon black and C–F moieties of the Nafion, while better MEA performance is a result of the presence of these moieties as well as pyridinic nitrogen and nitrogen associated with metal in the pyropolymer. Optimal Nafion content is determined at 1:1 catalyst:Nafion weight ratio, while higher Nafion concentrations causes oxidation of the Nafion backbone itself as well as leaching of the CoxOy particles from the catalyst and formation of oxidized species of Co, O, C and F.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: